20 research outputs found

    A Specific and Rapid Neural Signature for Parental Instinct

    Get PDF
    Darwin originally pointed out that there is something about infants which prompts adults to respond to and care for them, in order to increase individual fitness, i.e. reproductive success, via increased survivorship of one's own offspring. Lorenz proposed that it is the specific structure of the infant face that serves to elicit these parental responses, but the biological basis for this remains elusive. Here, we investigated whether adults show specific brain responses to unfamiliar infant faces compared to adult faces, where the infant and adult faces had been carefully matched across the two groups for emotional valence and arousal, as well as size and luminosity. The faces also matched closely in terms of attractiveness. Using magnetoencephalography (MEG) in adults, we found that highly specific brain activity occurred within a seventh of a second in response to unfamiliar infant faces but not to adult faces. This activity occurred in the medial orbitofrontal cortex (mOFC), an area implicated in reward behaviour, suggesting for the first time a neural basis for this vital evolutionary process. We found a peak in activity first in mOFC and then in the right fusiform face area (FFA). In mOFC the first significant peak (p<0.001) in differences in power between infant and adult faces was found at around 130 ms in the 10–15 Hz band. These early differences were not found in the FFA. In contrast, differences in power were found later, at around 165 ms, in a different band (20–25 Hz) in the right FFA, suggesting a feedback effect from mOFC. These findings provide evidence in humans of a potential brain basis for the “innate releasing mechanisms” described by Lorenz for affection and nurturing of young infants. This has potentially important clinical applications in relation to postnatal depression, and could provide opportunities for early identification of families at risk

    Regional Brain Responses in Nulliparous Women to Emotional Infant Stimuli

    Get PDF
    Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infant cries of two distress levels (low and high) and unknown infant faces of varying affect (happy, sad, and neutral) in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle temporal gyri (STG and MTG) and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic processing. Differences in motivational tendencies may modulate neural responses to infant cues

    <span style="font-size:12.0pt;font-family:"Times New Roman";mso-bidi-font-weight: bold" lang="EN-US">Preparation, Evaluation and Storage of Preserve Made from <i>Amla </i>Cultivars Grown in Kandi Area of Punjab State </span>

    No full text
    461-465Studies on fruit characteristics, physico-chemical analysis of fresh pulp and storage quality of preserve were carried out on Amla varieties grown in Kandi area, viz, Chakaiya, Francis and Kanchan. The data helped rank these varieties for preferance as: Francies> Chakaiya > Kanchan, as fruits of Francis variety were characterized with highest fruit mass of 40.65 g. shape index of 0.84, seed:pulp ratio of 1.16.6, TSS (10°Brix), pectin (0.54 per cent), protein (0.73 per cent) and overall sensory score. Fruits of Chakaiya variety were placed next due to its overall sensory performance, shape index of 0.83, seed: pulp ratio of 1.16 and protein (0.71 per cent), with high levels of tannins (1.09 per cent). Fruits of Kanchan variety were characterized by high level of ascorbic acid (540 mg/100 g). Ascorbic acid suffered the highest losses during processing (75 per cent) and upon storage (40 to 43 per cent). Reducing sugars, TSS and pH increased during six month storage of preserve at ambient temperature (12-38°C) while acidity declined. The tannins decreased from 8.0 to 10.3 per cent. Varieties and storage period showed significant effects on sensory scores (p < 0.05). All the three varieties were suitable for preserve making

    Nanoparticles of oxidized-cellulose synthesized by green method

    No full text
    Site specific drug delivery is the foremost requisite for chemotherapy to avoid the associated side effects. For this, stimuli-responsiveness of the drug delivery device is of great interest to selectively release the loaded drug to the tumor cells. Herein, the oxidized cellulose nanoparticles (OCNPs) were synthesized by oxidation of cellulose with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and sodium periodate followed by sonication. Doxorubicin (Dox), as model anticancer drug, was loaded on the synthesized OCNPs via pH-responsive linkages between functional groups of Dox and OCNPs. Its release behaviour was studied in medium of different pH values. Dox release was maximum at pH 5.0 and pH 6.8 i.e., endosomal and extracellular pH, respectively in tumor tissue, and minimum at physiological pH 7.4 of normal tissues. Various mathematical models were applied to elucidate the release mechanism of the Dox from the loaded OCNPs. Dox release followed non-Fickian diffusion mechanism. The results suggest that these pH-responsive OCNPs are effective and promising Dox-delivery carriers for cancer treatment and capable of reducing side-effects of this anticancer drug to the normal cells. Keywords: Green synthesis, Oxidized-cellulose nanoparticles, Site specific drug delivery, Non-Fickian diffusio

    The neural basis of maternal responsiveness to infants: an fMRI study

    No full text
    Using fMRI, we examined the neural correlates of maternal responsiveness. Ten healthy mothers viewed alternating blocks of video: (i) 40 s of their own infant; (ii) 20 s of a neutral video; (iii) 40 s of an unknown infant and (iv) 20 s of neutral video, repeated 4 times. Predominant BOLD signal change to the contrast of infants minus neutral stimulus occurred in bilateral visual processing regions BA minus neutral stimulus occurred in bilateral visual processing regions (BA 38), left amygdala and visual cortex (BA 19), and to the unknown infant minus own infant contrast in bilateral orbitofrontal cortex (BA 10,47) and medial prefrontal cortex (BA 8). These findings suggest that amygdala and temporal pole may be key sites in mediating a mother's response to her infant and reaffirms their importance in face emotion processing and social behaviour

    Functionalized <i>Moringa oleifera</i> Gum as pH-Responsive Nanogel for Doxorubicin Delivery: Synthesis, Kinetic Modelling and In Vitro Cytotoxicity Study

    No full text
    Environment-responsive-cum-site-specific delivery of therapeutic drugs into tumor cells is a foremost challenge for chemotherapy. In the present work, Moringa oleifera gum–based pH-responsive nanogel (MOGN) was functionalized as a doxorubicin (DOX) carrier. It was synthesized via free radical polymerization through the γ-irradiation method using acrylamide and N,N’-MBA followed by hydrolysis, sonication, and ultracentrifugation. The swelling behavior of MOGN as a function of pH was assessed using a gravimetric method that revealed its superabsorbent nature (365.0 g/g). Furthermore, MOGN showed a very high loading efficiency (98.35 %L) of DOX by MOGN. In vitro release studies revealed that DOX release from DOX-loaded MOGN was 91.92% at pH 5.5 and 12.18% at 7.4 pH, thus favorable to the tumor environment. The drug release from nanogel followed Korsmeyer–Peppas model at pH 5.5 and 6.8 and the Higuchi model at pH 7.4. Later, the efficient DOX release at the tumor site was also investigated by cytotoxicity study using Rhabdomyosarcoma cells. Thus, the synthesized nanogel having high drug loading capacity and excellent pH-triggered disintegration and DOX release performance in a simulated tumor environment could be a promising candidate drug delivery system for the targeted and controlled release of anticancer drugs
    corecore